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The static dielectric function is studied for a transition metal on the basis of a model band

structure with noninteracting s and 4 bands.

The free-electron approximation is used for

electrons in the s band, while a simplified tight~binding scheme is used for the d electrons.
Explicit expressions are obtained for the intraband and interband contributions to the dielec-
tric function. The model is applied to calculate the static dielectric function for paramagnetic
nickel for (3d)° (4s)! and (3d)®* (4s)° configurations along the three principal symmetry di-
rections [100], [110], and [111]. The contributions due to the intraband and interband transi-
tions are compared: It is found that the major contribution to the dielectric function is due to

the intraband transitions.

I. INTRODUCTION

The response of a many-electron system to an
external perturbation can be discussed in terms
of the frequency and wave-number-dependent di-
electric function €(q, w).! Here q is the wave
number and w is the frequency. Noziéres and
Pines? and Ehrenreich and Cohen® deduced explicit
expressions for the longitudinal component of the
dielectric tensor within the random-phase approxi-
mation, and they did not consider the local field
effects. Adler? deduced an integral equation for
the generalized dielectric tensor, including local
field effects, and discussed some limiting cases
of the general expression. When we are dealing
with a system of nearly free electrons, the com-
plex expression for the dielectric function reduces
to a simple form. There have been attempts at
evaluation of the dielectric function for semicon-
ductors, *7 but because of the difficulties intro-

duced by the presence of d electrons, not much
work has been done on the problem of dielectric
screening in the transition metals. Recently,
Hayashi and Shimizu® studied the dielectric screen-
ing in a transition metal. They considered two
models, first a single-band model for d electrons
and then a two-band model for s- and d-band elec-
trons. They did not consider explicitely the con-
tribution from the interband transitions.

In this paper, an explicit expression for the
longitudinal component of the static dielectric ten-
sor for a transition metal is deduced. The form-
alism, presented in Sec. II, is applied to the spe-
cific case of paramagnetic nickel in Sec. III. The
results are discussed in Sec. IV.

II. THEORY

The general expression for the longitudinal
static dielectric matrix in the random-phase ap-
proximation is®
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Here N is the number of unit cells 1n the crystal;
Q, is the volume of the unit cell; G G and H are
the reciprocal-lattice vectors; the orbltal quantum
number ! and magnetic_ quantum number m act as
the band indices; E,, (k) and y,, (K) are the eigen-
values and elgenfunctlons, respectively, corres-
ponding to the state specified by the wave vector
E; n,,(K) is the Fermi occupation-probability
function for the state K for the band specified by
the indices Im; q is the phonon wave vector; and
e is the electronic charge. The summation on k
is over all the occupied electronic states. We re-
write Eq. (1) in the form

€@+G-q+G") =64 —F(H+§,§+G')[a+al'2,

(2)

where F has the obvious explanation. If we use the
orthogonality condition

2 e(a+a,('f+5") e + 5",a+6'):660., (3)

el

(1)

r

we obtain
"Il)

€eNG+G,3+G") =650 +2 F({+G,q+G
Gl'

XE'I(E+E}.:'§+§’) la+§|'2. (4)
This is the general expression for the longitudinal
inverse dielectric matrix obtained by Adler? and
Wiser. 1

In order to render the dielectric matrix (1) trac-
table to calculation, a model band structure is as-
sumed for the transition metal. Let z, and z; be
the number of electrons per atom in the s and d
bands, respectively. The different d subbands are
characterized by the values of m. Because of the
presence of the perturbing field with wave vector
d, the electrons themselves undergo the intraband
and interband transitions and redistribute them-
selves. In this model, the dielectric matrix of Eq.
(1) can be written in the form

€(a+a,(‘l’+6’) = GGG’ - 633(54-6,6-#6,) - €dd(a+§,a+§')— €ds(a+6, (-l’-(-él)— fsd(a+a,&+6’), (5)

where

€. (§+G,3+G) =V@G+D D T {[n, &) - ns K+ 3+ D] /[E,K) - E
k H

k+q+H]}

x (i, (&) | exp[- i(G+B)- ] |zps(E+q+ﬁ))(¢s(E+a+ﬁ)Iexp[z(a+5') F11v, @), (6)

-

€@+G,3+C)=VE+OD LT T {ltan®) = n1gms B4 G+ )]/ [Egm(®) = Egpe €+ G+ B ]}

kR H m,m’

X { han(B) | expl= i@+ B + F1 | Yame ®+ T+ H))  dgme K+ G+ B [ expld@+G) + F1[9am®) , (D

—», -

..
€tis(cl'*' »ad +

x(zpdm(k)]exp [-iJ+@) -7

) =4me?/N Q,q2

The expression for €, is obtained by interchanging
the subscripts s and dm in (8).

Here V(g

A. Evaluation of e (4 + G,g+G")

We have used the plane-wave approximation for
the s band,

bs(B)=(NQ )12 exp (K- T) (9)

)= V(§+G) 7 57 g = 0y B+ G+ )]/ [Eam®) - Es(€+q+ D}
H m

1 0s (R4 G+ FD) (g (R+ g+ H) | expli@+G") - T1] dam®).  (8)

[
and E,(K) = E%+ 7 %k2/2m,, (10)

where m; is the effective mass for the s band and
E? is the energy at k=0 in the s band. With these
approximations, (6) simplifies to the familiar ex-
pression

2ms ke’ (1 4k%—p 1 [2kps +p

€ (.’ = -
ss p) Wh_zpz + 4szp IZkFS

(11)
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Here the Fermi sphere for s electrons has the
radius

Frs =(32,m2/Q2)Y% and p=q+H.
B. Evaluation of €4, (4 + G,q4+G"

We use the simple tight-binding functions for the
d electrons

ban(®)= (V)12 T expliR - L) 90 (F - D, (2

where T is the lattice vector. We write the d-elec-
tron energies in various d subbands in the ef-
fective-mass approximation

Egn(R) =Efy+ %k%/2my, (13)

where my,, is the effective mass for the mth d sub-
band and Eg,, is the value of E,, (K) for K=0. If

we write p'=q+G and use (12), we can write the
matrix element occurring in Eq. ("7 in the form

Jvay ¥ &) exp(= B’ Ty €+ dF =6,y0 [ O%n(F) exp(=D '+ F) by F) dF

+A/NZ Y expl- ik (T-T) ) expli @ - T'-3' - D] S @) expl= D'+ T) g F+L-LVaF. (19
L

The prime on the summation indicates that the term
L=L"is excluded. We neglect the multicenter
integrals, and the above matrix element reduces

to

épp'Adm.dm'(El), (15)

where A gy, gme (B') is the integral in the first term
of Eq. (14). The other matrix element occurring
in (7) is given by the complex conjugate of (15).
Because of the 6 functions present in the matrix
elements, the dielectric matrix reduces to the
diagonal form, and we get

€44 (5) = 2V(.§) Z E' Adm,dm' (5) A:lkm,dm’ (17)
x§ 14m®) / [Egn(®) = E (B + G+ H)] ). (16)

1. Case (i): m=m'

This corresponds to intraband transitions in a

subband. In this case, we find that
-> Zez E -\ 12
€dd(p)=_ 2 2 Zmdmdem'Adm.dm'(p)!
pomRE Y
4dem—p2 Zdem +p >
X1 40— In| —"— .
( +4demp Zdem_p

Here kg4, is @ wave vector for the highest occupied
state in the subband dm and is given by kg,
=(37%24,/Q)" 2.

2. Case (ii): m#m’

Here we have to consider the transitions from
one subband to another subband. We rewrite Eq.
(16) in the form

Edd (5) = ZV(.I;) Z Zl', A(lm,dm’ (5) A*t;m ant (5) Ik ) (18)

[
where
I, =TZ_4m§1_Y._.._
Tndem o

kpam dk - (19)
) 72R%/2mygm— [ + D 13 /2mygpe | *
and the prime on ¥ indicates that the term m=m'
is excluded. Evaluation of the above integrals
yields!

- - - 2 .
€44 (P) = Z\/ Z ! Adm.dm' (p) A:,“m,,,,,,:(p) §;‘T':Tn#‘ (Ip +[a) ’
m m'

X

(20)
2
where I,:ﬁ‘“gm_ [_’Z‘T;m_ _74% (1+_§__)]
| 2k pgmp = Koam E+P° 2
XInIZdemp-pk%dmg_pz ’ ( )

and

PP A\ izl | =20+ 28 k= (= 0)V2
L=% (1+£>( M (ln\—zp+2§k1.~:m+(—)\)”2|

2p + 2 kpgm— (=12
2[) + 25 dem‘-(* (—' A)llz

+lnl ) it A<0 (29

= (p%/8)[1+(1/6)] 200/ 2[tan" (~ 2p + 28k pgm) A) V2

+tan(2p + 28 kpg, (V)M 2] if A> 0. (23)
Here X=-4p3(t+1) (24)
and  £=(mgpe /Mgy — 1. (25)

The analytical expressions for A,, ,,,,,,.( p) are
given in Appendix A,

C. Evaluation of €4(§+G.4+G")
We substitute for ¥, (k) and #,,,(k) from (9) and
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(12), respectively, in the matrix element occurr-
ing in (8) to obtain
j;,g lp:ikm (E) exP(— iﬁl
0
= (*Qo)-l/2 Oppe fmo Odm

The other matrix element in (8) is the complex
conjugate of (26). Combining (26) and (8), we get

> -»u nm(E) %S(E+a+ﬁ)
€4 (P ) =V(p )ZZZM)

. ;)ws (E +-IS) d;
(F)expliK - F)dr .  (26)

x 6”,6,,,.,(1/90)[ o¥, ) exp(ik - T) dt
f Gum(T) exp(~ iE * ¥) d¥ . (27

The presence of the 6 functions renders €, (p' p’
diagonal. The transitions to be considered here
are from the d band to the s band. Therefore, the
sum over the initial states K is to be carried out
over all the occupied states in the subband dm.
The state K+q+ H in the s band should be unoccu-
pied for the transitions to take place. Therefore,

-> V(P) n M(E) he
€45 (p) = ZZ Edm(Ed) - E, (?4_;)’/:90 ¢;‘m(1‘)

m k

Xexp(iE - F)dF | 9unlE) expl- 4K - F) .
(28)
These integrals can be simplified (see Appendix A)
to give
(4m?[Fy(R)]?

V(p)
ZZ E,(K)-E &+D)

XY3*(0,,00) Y3 (6,,04). (29)

€45(P) =

Here 6, and ¢, are the polar angles of vector K and
Fyk) = [ 7 jolker) Ryg (72 dr. (30)

jn (k7) are the spherical Bessel functions and Ry, (7)
is the 3d radial wave function. Using (A8) in (30),

we get
Fy(r) =48 12 _J—g-—T—;“i o N (31)
(ai + k

The symbols are explained in Appendix A, Using
the approximations (10) and (13) for E,(K+P) and
E;.(K), respectively, and replacing the sum over
k by integration, (29) yields

4
cas(B) =52 ”e n* Ze s ﬁ“’"[mk)]zkz dk
m

/ fzf Y0 00) Y00 08) 4o (32)

a— b cosby,
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Here dem =(37T2de /%)1/3’
a =k2[(ms/md,,,)- 1] ‘pz ’ (33)
and b =2kp.

Z4m 1s the number of electrons per atom in the sub-
band dm, 6,, is the angle between the vectors kK
and p, and d€, is the solid angle. The evaluation
of the angular integration is tedious and is given
in Appendix B. The final expression for €,(p) is

32e i"—g—Z( nm { / Fam [F,(k)] 2k2 dk}

><[D()sz()z-m 10"' (Dlszfl-m +D§1mD%-m) Il

6ds (p)

+ (D3, D%+ D%pD5. ) I] . (34)

D, are the elements of rotation matrices'? with
argument (~v, - B, — @), where a, 8,y are the
Euler angles. I, I;, and I, are defined by Eq.
(B8). We find

IO:%(% n0—312+'f ),

(35)
11:_145_("In2+1n4)’
12:'18§ (%Ino- In2+%1n4)a
where I,=-+1In '2:5 ,
1/2a a b-a
42“3(?*? e ) ’ (6)

b-a
bra

IL,= <2a+2a +a4 In|——
=T \30 7 B Tt

) :

D. Evaluation of e, (§+G,§+G")

Here we proceed in a manner analogous to that
used for deriving the expression for €,,(p). How-
ever, we have to consider the transitions from the
s band to the d subbands. We find

V(p) (Am?[F(IK+p1)]2
@ =g =Ll TD)

XY5 Oprpbrop) Y5 *Ohsps Prvp) (37)

where 8,.,, ¢,+, are the polar angles of the vector
E+pP. The summation over K is over all the oc-
cupied states in the s band. Using Egs. (10) and
(13) for E (k) and E,,(K+D), respectively, we
obtain
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€)= 32e medm[Fs B d / o (FoIR+D1) 12 Y7 Bnups Pusp) Y5 Onsp, basy) A (39)

where a'=kmyn/ms— 1) - p. (39)

The angular part of the integral (38) is discussed
in Appendix C. Using (C2), we can write

€ ) =2 2o - D" (D8 D fre w5 wan

+(D3, DL + D} D% ) osz L'k dr
(D-ZmDZ"m +D2mD-2. )ﬂFs Izlkzdk] . (40)

I, I, and I, are obtained with the help of (C3),
(C4), and (30):

4 4
I =%(48)2 2. 2 aja;a; a,
=171

xf_:‘ (2p%- K2+ 3% 2+ 4pkt)2dt[S(1)] ™,  (41)
with S(t) =(aZ+k%+p%+ 2kpt)*

><(0£3+kzﬂi)2+2k'pt)4 (a’-bt), (42)

|

2N kpgm— 20 = (= py)*/?

a’~bcosh,,

II,= —%(48)222(11 a,a‘a,

/ [(p+ k)22 + 2+ 2Bpt) = (p+ t)*] dt
-1

S (43)
and I, =§ (48)22;2:‘ a;a;0, aj/;IE(—tZSW)—@'
(44)

The integrals in (42)-(44) can be evaluated by us-
ing the method of partial fractions for the two
cases ¢ =j and 7 # j separately. The final expres-
sions are very lengthy and we do not give them
here. In fact, the numerical integration proved to
be more convenient for these equations.

E. Evaluation of € ; and €;; in Free-Electron Approximation

The expressions for €;; and €, are quite com-
plicated even when we use extremely simple forms
for wave functions of s and d electrons. We there-
fore thought it interesting to evaluate €, and €,
by adopting the free-electron approximation for
electrons in the d band also. The electron ener-
gies are written by using the approximations (10)
and (13). ¢,, is given by

20 Rpgm+ 2P — (- “1)1/2

eds(p)—‘lms;lgé:{ldwr:( )( u)”zl:ln

ap 20 kpgm— 2p+ (= uy)'7? +ln 20 kpgm+ 20+ (= 1) 172 ]}
for u,<O, (45)
=(4mg/ma)(1/pD 2 (lm (p%/m)(1+ 1/n) 2(uy) ™/ #{tan™ (= 2p + 20 gy (k1) ™2
+tan[(2p+ 2nkF¢m)(H1)'”a]D for u;> 0. (46)
_dem dem _B_ Zﬂ 2demp" nk%dm*‘pa
Here lm="" [ B ( )] P (gt + 1 oim- 7| (47)
77 =(ms /mdm) - 1 (48)
=~ 4p¥(1+1),
Ky p%(1+7) 49

and q is the Bohr radius. Similarly,

28 kps — 2p —

(- uz)uz

(1+2) ot

4 2
€ul) =T pony {Ism+§—

28 bps = 20+ (= py)t2

1n| 28 krs + 25— (= pyt/?
28 bps +2p+ (= p)t7?

]} (50)

for pp< o,

_5 dmyy, 2 1 2 4 (—2p+2 sz) -1 <2P +2¢ knﬂ }
_EMW {Im+ 3 <1+§> W[tan (Wr—— +tan SRR for u,>0. (51)
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Here I, ¢ |:41) a (1 +§ >}
ks p = & Ko +P°
Py ey (52
¢ =(mgm/ms) -1, (53)
and W, =-4p3(1+¢). (54)

III. CALCULATIONS AND RESULTS
A. Model for Band Structure

The formalism developed in Sec. II is used to
calculate the dielectric function of paramagnetic
nickel. In the literature, there exist many calcu-
lations!®-!7 for the band structure of nickel in the
paramagnetic and ferromagnetic states. We have
based our model on the results obtained by Hanus®
for paramagnetic nickel using the augmented-plane-
wave method. The s and d bands are admixed by
the s-d interaction. The s and d characters of the
‘wave function in a band vary as a function of K.
The bands have a dominantly s character at I, but
d character at the X,, L,, and K, symmetry points.
It demands heavy computational effort to use the
results of a realistic band structure in the calcula-
tion of the dielectric matrix (1). We therefore
thought it worthwhile to construct a model utilizing
the calculations of Hanus, but one with noninter-
acting s and d bands. This model should predict
the general behavior of the dielectric matrix.

We start with the energy values as a function of
electron wave vector K along the principal symme-
try directions [100],[110], and [111] obtained by
Hanus, The noninteracting bands are obtained
from the results of Hanus for the eigenvalues at the
high symmetry points,” The s bands are obtained
by joining T'; to X,, Iy to K;, and T'; to Lz' in the
[010], [110], and [111] directions, respectively.
For the d bands, T';, is joined to X; in the [010] di-
rection; I'j,and I, are joined with upper and lower
K,, respectively, in [110] direction; and I'y; is
joined with L, in the [111] direction.” The results
of such an interpolation are presented in Fig. 1.
The plots for d bands look similar to those obtained
by Yamashita et al. ' using the modified tight-
binding approximation.

The d bands are fivefold degenerate, and the dif-
ferent d subbands should be assigned with different
magnetic quantum numbers . This is done by
examining the d component of the basis functions!®
for the representations I') X, K, and L, T, has
YZ and YJ components. X, and X,, which join with
I';,, have both Y and Y) components. However, K,
has the components Y2 and joins with X,; we there-
fore assign m =2 to I'j, ~X, and Iy, = K, subbands.

PRAKASH AND S. K. JOSHI 2

I',—~X,and I';,~ K, are characterized by m =0.
L, has Y% and Y components, hence the d subband
Ty, ~ Ly (doubly degenerate) is to be specified by
m=0and 2. T, corresponds to Y52, Y}, and ¥;*
components. X; which joins with I'p5, has Y2
and Y} components. However W in the [120] di-
rection and K, in the [110] direction, which join
with X, have the basis functions with component
Y:. L,also joins with X5 We therefore assign
m =1 to the d subbands I'p;~X;, I'ys—~K, and
Ty~ L, The X; has ¥,;! component, K, has Y}
and Y;! components, but it joins with X,; there-
fore m =~ 1 is assigned to the d subbands Fzs'——X3
and T'p;~ K;. The m=- 1 is also assigned to the d
subband Ty~ L, (doubly degenerate). The re-
maining subbands I'y;~K, and I'y;~ L, are charac-
terized by m =~ 2. The m assignments for differ-
ent d subbands in the three principal symmetry
directions are displayed in Table I

It is clear from Fig. 1 that the Fermi level in-
tersects only the s band and the d subband with
m=1. All the other d subbands lie below the
Fermi energy; hence they are completely filled.
If there are z; electrons per atom in the s band,
then there will be 24, =2 -z electrons per atom
in the unfilled d subband with . =1. In the para-
bolic band approximation used by us

kps = (8122, /R0 and  kpe=(37%,,/920 3.

Let the s band and the unfilled d subband intersect
the Fermi level at the points A and B, respectively,
as shown in Fig. 1, then the effective masses
and my, for the parabolic bands I'; ~ A and T'ys~ B
are given by the relations

mg =h2k%, / 2[(Ep +0.016)],
Mgy =7’Z2ki"a1/ [Z(EF - E(rés»] .

Here E(T,) is the energy for the representation

1"2'5 tabulated by Hanus. The energy scale has zero’
at I';. The energy will be measured by Rydbergs
and the distance will be measured in Bohr units
throughout. The completely filled d subbands with
two electrons per atom are filled up to zone bound-
ary. The Brillouin zone is replaced by a sphere

of radius k5.

We still have to estimate the average effective
masses associated with filled d subbands. We cal-
culate the effective masses for bands along differ-
ent symmetry directions using the eigenvalues tab-
ulated by Hanus, but with a shift of zero, as men-
tioned above. Using these values of the effective
masses, the eigenvalues at 2=k are calculated
for all the filled d subbands and in all the three
symmetry directions under consideration. We then
use the Houston’s method to average the eigenval-
ues for the three directions and to get the average
eigenvalues for each of the m =0, 1, 2, and - 2 sub-
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FIG. 1. Model of the non-
interacting band structure for
paramagnetic nickel based on
the calculations of Hanus (Ref.
13).

bands. The final values of the effective masses
are derived from the averaged eigenvalues.

The effective masses deduced in the manner de-
scribed above are then used to calculate the model
isotropic energy band structure shown in Fig. 2.
The effective masses m;, m,; and the Fermi mo-
‘menta kp, and kg, are calculated for the two con-
figurations (3d)° (4s)! and (34)°* (45)*®. The
model parabolic bands for these two configurations
are shown in the Fig. 2 by the solid and dashed
lines. The values of all the parameters are
presented in Tables II, III, and IV,

B. 3d Radial Wave Function

The 3d radial wave function in a parametrized
form (Appendix A) for the neutral atom of nickel
is available from the work of Watson'® and Cle-
menti.? The 34 radial wave function obtained by
solving the Schrddinger equation for the potential
used by Hanus in his augmented-plane-wave calcu-
lations is compared in Fig. 3 with the radial wave
function obtained by Watson and by Clementi. It is
found that Watson’s wave function is nearer to the
results of our calculations. Moreover, Watson’s
wave function is a linear combination of four ex-

TABLE I. Assignment of the magnetic quantum num-
ber m to different d subbands along three principal sym-
metry directions.

[o10] [110] [111] m
Tp—X, Tp— Ky Ty~ L 2
Tp—X Tp—~ Ky Typ—~Ls 0
Tj—X; 35— Ky 95— Lg 1
Tg5—~X; T~ K3 Ty~ Ly -1
Tg5—~ X3 Iy— K, Ty~ Ly -2

ponential functions whereas Clementi’s wave func-
tion contains five terms. This simplification re-
duces the computational work considerably.

We therefore decided to use the Watson 3d neutral
atom radial wave function in this calculation. The
parameters of the wave function are given in the
Table V.

C. Dielectric Function

In view of the model chosen for the band struc-
ture, the following types of transitions are respon-
sible for the readjustment of electrons in response
to an external field: (i) from unfilled s band to un-
filled s band, (ii) from unfilled and filled d sub-
bands to unfilled d subband, (iii) from unfilled and
filled d subbands to s band, and (iv) from s band
to unfilled d subband. These contributions are cal-
culated with the help of Eqs. (11), (16), (34), and
(40), respectively, for the configurations (3d)° (4s)*
and (3d)%* (45)°8, The dependence on the direction
of the vector p enters through the polar angles 6,
and ¢, in Egs. (16), (34), and (40). Because of
the choice of the polar axis and the use of spherical
harmonics, the dielectric matrix does not exhibit
the symmetry of the crystal.?!=® The dielectric
function €(p) is calculated along the directions
equivalent to the principal symmetry directions
[100], [110], and [111]. For example, p is taken
along all the six directions equivalent to [100],
and corresponding values of €(p) are obtained.

For a value of 13, the simple average of all the six
values of €(p) is taken as the average €(p) along
[100] direction. Similarly, for [110] and [111]
directions, the averaging is done over all the
twelve and eight equivalent directions, respective-
ly. The values of €4, €45, €5, and €4 for the
(3d)® (45)! configuration along three principal sym-
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FIG. 2. Isotropic energy band structure for paramag-
netic nickel. The solid lines are for the configuration
(3d)%(4s)! while dashed lines are for the configuration
(3d)%+4(45)°*¢. The filled bands are identical for both the
configurations. The numbers by the side of the d sub-
bands denote the magnetic quantum number m assigned
to them.

metry directions are tabulated in Table VI. Sim-
ilar calculations were repeated for the configura-
tion (3d)** (45)*% The dielectric function for the
configurations (3d)® (4s)! and (3d)%* (45)¢ are
shown in Figs. 4 and 5, respectively. The values
of €;, and €, calculated from (45), (46) and (50),
(51) are tabulated in Table VII. When we compare
these free-electron approximation values with the
values of €,, and €, calculated in the manner ex-
plained above, we find that the free-electron ap-

TABLE II. Physical parameters for nickel.

Lattice parameter a = 6.6586
(in units of Bohr radius ay)
Volume of the unit cell

(in units of af)

Radius of Brillouin sphere kg = 0.9292
(in units of 1/ay)

=73.8034

PRAKASH AND S. K. JOSHI 2

TABLE III. The Fermi radii and effective masses for
s and unfilled d bands for the configurations (3d)%(4s)!
and (3d)%%(45)%¢, The radius is in units of 1/a, and mass
is in atomic units.

Configuration (3d)°(4s)! (3)%4(45)%+6
kps 0.7374 0.6223
Epai 0.7374 0.8247
mg 0.8958 0.6381
Mgy 3.4723 4,3431

proximation yields very high values for €;; and

€54+
1IV. DISCUSSION

The contributions to €,, are separated into two
parts. When m=m, the transitions take place in
the same subband, which should not be completely
filled. In this case m=m'=1. When m#m', the
transitions are from filled d subbands to the un-
filled d subband. The two contributions are pre-
sented for few p vectors with components p,, p,,
p, in the [100], [110], and [111] directions in
Table VIII. In the m=m' part, it is found that
€, (D) decreases rapidly with increasing p. The
contribution of the second part, i.e., for m #m',
is very small compared to the contribution from
the first part for smaller values of p while the two
contributions are of the same order for larger val-
ues of p. This is because the denominator of (16)
is much larger in the latter case than in the former
case for small values of p while these denomina-
tors become comparable for larger values of p.

The larger value of €,, for the configuration
(3d)°* (45)%% compared to the value for the configu-
ration (3d)° (4s)! results simply because of the
larger number of itinerant d electrons for the
former configuration. The general behavior of
€4, for both the configurations is similar. €y, for
the configuration (34)°:* (4s)%® has a smaller value
than that for the configuration (3d)° (4s)!, and this
is easily explained on the basis of the larger num-
ber of s electrons available in the latter configura-
tion.

The contributions due to interband transitions,
i.e., €; and €5, are much smaller than €, and
€4 . For smaller values of p, e,;s and €, are of
opposite sign, while for larger values of p they
have the same sign. The magnitude of €;; and €,

TABLE IV. Isotropic effective masses for different
filled d subbands in atomic units.

m 0 -1 2 -2

mgn,  —6.5218 —29.9760 18,7257 —13.9398
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FIG. 3. Comparison of 3d radial
4. wave functions of nickel. Solid curve
represents the wave function obtained
with the help of the Hanus potential,

4 dashed curve represents the para-
metrized neutral atom wave function
due to Watson (Ref. 19), while dot-

4 dashed curve refers to Clemente’s
wave function (Ref. 20).
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for the configuration (3d)** (4s)*® is smaller than
the corresponding magnitude for the configuration
(34)° (45)%. It is found from Table VI, that the
contribution of €;, is largest among all contribu-
tions for p<1.5. But for p>1.5, €, is of the
same order of magnitude as the other contribu-
tions.
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APPENDIX A
We shall evaluate the integral

Bimpreme @) = [ ¢=rm(5)exp(-z-5.;)¢,,,,,(5)dx(f.
A)

The coordinate system is shown in Fig. 6. Using
G1m(F)=Ry(N Y (6, ¢) (A2)

and

TABLE V. Parameters for 3d radial wave functions.

i 1 2 3 4
a; 0.4475 6.5891 65.9440 99.6357
o 1.4397 2.7898 5.4416 9.8567

>

—t
=0

Yo' (8, @) s (07) Y7 (0, ¢)

exp(-ip.T) =47 (-2

"™

X 2

me = .1

(A3)

in (A1), we get

o I

Bim,prme®) =47 (=)™ 2 Y7 *(6,,0,)

=0 mo=_g
><j;m]'z»(pr)R,(r)R,'(r)rzdr f0" f:’ Yn'(6,9)

XYT*(8,0) YT (6, ¢) da. (Ad)

With the help of the relation
S SE YR e, ©YTM6, AT (6, 4) an

n - 4 1/2
(_______(42111(;;)5211) * 1)) C(l”l'l;m"m'm)
xC(1"1'1;000),

we get
(> = " g »
Alm.l’m'(p):47r l"ZO (—i)' Z Y;r:: *(9b1¢ﬁ)
= mr=aqn

" ' 1/2
X [ im AR Ry () ar (B D)
xC"'U't; m"m'm)c(1’'1'1; 000). (A5)

Here the angular momentum and parity selection

rules operate through the Clebsch-Gordan coeffi-

cients C(1"1'1; m"m' m) and C(1"1'1 ;000), respec-
tively. Wigner’s closed expression for C coeffi-
cients is
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I

e N@" U =DV m) 1 (1= m)!

C' ' t; m" m m) =6,y areme <(zz +1) g,

+ 41+ D1G7 =

1/2
m V" +m " N =m0+ mﬁ')

(= vy me (' slem"=NE" = m"+ V)1
Xz d H + i
v vl O-1"+1 =N Trm=-N " =T =m)! * (48)
[
The index v assumes all integral values to be such xC(422; m" m' m) 1, (A7)
that none of the factorial arguments are negative. w | 2 2
For the 3d wave functions both ! and I’ are 2, and where  Ip= fo i 7) Ry (r)r2ar. (A8)

allowed values of 1" are 0,2, and 4. Summing over
1” in Eq. (A5) and substituting the values of
C(1"1'7;000) from (A6), we get

407\ Y2 _ .
Ao ame (D) =1p0 mm'+< 7 ) Y3 (6,, ¢,)

1/2
xC(222; m" m m)12+<73”> YrU*(e,, ¢,)

TABLE VI.
€gq for the configuration (3d)°(4s)!.
in units of 1/a.

Relative Magmtudes of €ssy €ans €ass and
Here D is measured

bl — €55 —€34(®) — €45(D) —€sa®
[100] direction
0.2 20.8969 79.0620 4.2028 -1.1100
0.4 5.1257 18.0548 1.1078 -0.6207
0.6 2.2028 6.9253 0.4552 -~ 0.4699
0.8 1.1765 3.1834 0.1962 0.2185
1.0 0.6971 1.5736 0.0922 0.0082
1.5 0.1718 0.2289 0.0162 0.0059
2.0 0.0437 0.0359 0.0049 0.0010
2.5 0.0169 0.0096 0.0020 0.0001
3.0 0.0079 0.0035 0.0010 0.0000
3.5 0.0042 0.0016 0.0005 0.0000
4.0 0.0024 0.0008 0.0003 0.0000
4.5 0.0015 0.0005 0.0002 0.0000
[110] direction
0.2828 10.3838 38.3628 2,3787 -0.8518
0.5657 2.4955 8.0700 0.5469 -0.3043
0.8485 1.0293 2.7263 0.1825 -0.0751
1.1314 0.5072 1.0549 0.0619 0.0064
1.4142 0.2444 0.3882 0.0232 0.0656
2.1213 0.0339 0.0313 0.0043 0.0023
2.8284 0.0101 0.0062 0.0013 0.0002
3.5355 0.0041 0.0018 0.0006 0.0000
4.2426 0.0019 0.0007 0.0003 0.0000
[111] direction
0.3464 6.8787 24,8435 1.6021 5.3939
0.6928 1.6171 6.8287 0.3457 3.2891
1.0392 0.6332 1.4466 0.0933 0.0482
1.3856 0.2665 0.4458 0.0261 0.0116
1.7321 0.0831 0.1065 0.0103 0.0087
2,5981 0.0144 0.0103 0.0019 0.0006
3.4641 0.0044 0.0020 0.0006 0.0001
4.3301 0.0018 0.0005 0.0003 0.0000

We evaluate the integral I;» with the help of Wat-
son’s 3d radial wave function ,

4
RSd (1’) = Z/ aﬂ’zexp(— o, 7’) . (AQ)
i=1
The wave function involves the parameters a; and
;. We then get
B N
I=2. 2 a;a;As, (A10)
i=1j°1
4 4
L= ‘_El ?’;1 a;a; (- As+ Ay +34,) , (A11)
and
4 4
I,= 241 Z,l a;a;[210(A; ~ Ay) - 454, -2 A, + A,],
t=19=
(A12)
where
(a;+ ;)
A= » [p2+(a +aj)2] , (A13)
(o + o) [(a;+ ;)% - 3p?]
Ap= P2+ (a;+ @)’ ’ (A19)
_24(0; + ) ( (a;+a,)%=p? >
Ag= p? [pF+(a;+ ozj)?]z ’ (a13)
_12(a;+ @) (= 5pt=(a;+ @)t +10p2(a,+ )2
Ay= T 5 =
b [p%+(a;+a;)%]
(A16)
and

3p*+3(a;+a,) - 10p%(a;+ ) >

Ag=240(0,; + ;) < [p%+(a;+ @)%]®

(A17)

We give below the specific values of 4, ;,. which
have been used in our calculations:

Ba0,21(8) =% (5 2y I, - § (30m)" 2 ¥ 1,
Bg1,21(B) =Ly — & (51) /2 Y [, H(m /2 yO* ],
Bo1,1(B) =5(30M 12V %1, - H(10m 2y Px1, ,  (A18)
Bos 01(D) = ~2(30mM /2 ¥i¥ I, — Z(5m) /2 yi* [,

Byz,5(®) =~ 251/ 2Y* I,.
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Here the arguments of the spherical harmonics
are 6, and ¢, .

APPENDIX B

In this Appendix, we shall evaluate the angular
integral

m* m
. ﬁ ﬁ, Yy 0ut) YElu &) 0  (py)

a—-bcosb,,

We rotate the coordinate system shown in Fig. 6
through an angle ¢, about the Z axis and then
through an angle 6, about the new Y’ axes. The

new Z" axis obtained after the second rotation co-
incides with vector p. If a,B,v are the Euler
angles which rotate the coordinate system X, ¥, Z
to the coordinate system X", ¥Y”, Z", then a=¢,,
B=0, andy=0. The spherical harmonics in the
old coordinate system X, Y, Z are transformed in-
to the spherical harmonics in new coordinate sys-
tem X", Y”, Z" with the help of rotation matrices
D(a,B,7), i.e.,

Y70, 8) =5 Dk (0 B Y)Y 0y, 64). (B2)

Here 6, ¢ are the polar angles of vector K in the

100
90
eoL
70
60}

50

€(P)

FIG. 5. () versus p for the con-
figuration (3d)%* (4s)*%. The descrip-
tion is the same as for Fig. 4.

i

P (1/a0)

3.0
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TABLE VII. €4() and €4,(p) using the free-electron
approximation for the configuration (3d)%(4s)!. p ismea-
sured in units of 1/ay.

1Dl "6,13(5) - 34(5)

0.2 240.6554 —54.5128
0.4 49.2092 —-11.8872
0.6 17.7336 - 3.7036
0.8 7.3659 - 1.3607
1.0 3.3308 0.3689
1.5 0.5849 0.2838
2.0 0.1787 0.1390
2.5 0.0721 0.0412
3.0 0.0345 0.0176
3.5 0.0186 0.0089

new coordinate system X'’ Y’  Z'" while 6,, ¢,
are zenith and azimuthal angles in the old coordi-
nate system X, Y, Z. The angle 6,, becomes 6 in
the new coordinate system. Multiplying both sides
by D%b,. (@ B y), summing over m', and using
the orthogonality property of rotation matrices,

we get

Lime Difer e (aBy) Y (6, 0) = Y77 (6,, ¢,). (B3)

Replacing m" by m and using the property

TABLE VIII. The values of €54@®) for m=m’=1 and
for m= m’, for the configuration (3d)%(4s)!. p is mea-
sured in units of 1/ay.

bx by De _€M(5) _Edd(ﬁ)
m=m' m#=m'
m=1

0.2 0 0 79.3344 0.0089
0.4 0 0 18. 2886 0.0283
0.6 0 0 7.1106 0.0459
0.8 0 0 3.3220 0.0528
1.0 0 0 1.6729 0.0484
1.5 0 0 0.2496 0.0271
2.0 0 (1] 0.0349 0.0139

2.5 0 0 0.0069 0.0072
3.0 0 0 0.0016 0.0037
3.5 0 0 0.0004 0.0019
0.2 0.2 0 38.6063 0.0164
0.4 0.4 0 8.2154 0.0435
0.6 0.6 0 2.8005 0.0526
‘0.8 0.8 0 1.0793 0.0426
1.0 1.0 0 0.3900 0.0303
1.5 1.5 0 0.0232 0.0119
2.0 2.0 0 0.0026 0.0047
2.5 2.5 0 0.0003 0.0019
0.2 0.2 0.2 24,8017 0.0418
0.4 0.4 0.4 4.7603 0.0664
0.6 0.6 0.6 1.3849 0.0618
0.8 0.8 0.8 0.4091 0.0367
1.0 1.0 1.0 0.0869 0.0195
1.5 1.5 1.5 0.0055 0.0048

2.0 2.0 2.0 0.0006 0.0014

1o

FIG. 6. Coordinate system.

DY (aBy) =Dk, (-v,- B8, - a),
we obtain
Y7 (0r, 02) =2 e Dipm(=v,-B,- DY (6,9). (BY

For the sake of convenience, the arguments (-7,
- B,- a) of D}, are dropped. Using the relation
YI*(6,, ¢,) =(- D™ Y;™(6,, ¢,) and (B4) in (B1), we
can write

I= (— l)mz Z[ D?n’mDrzn"m

m’ m”
Y o Y26, D)YE"(6,
Xﬁﬁ a- bcosb s (B5)

=(- )"21 2,0 D2 D

m? P-m' .
xfr_Pz (cos8)P3" (cosh ) sind df | (B6)
0 a - bcosé

For [=2, the allowed values of #' in the sum are
0, +1,+2. Therefore,

I=(- )"[DE,DE. 1, +(D%,D? ..+ D3, D3..)I,
+ (ngsz-m"'DEZng—m)Ia] ) (B7)

where

P (cost) p;™ ' (cosh)
I.=2m [ =2 2 i
n [ At sind do . (B8)
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The elements of rotation matrices are evaluated
with the help of the general expression

D} on(aBy) =exp(- im’ a) exp(- imy) T, (- 1)°

to zero. The matrix elements of rotation matrix

+m(=7, = B,— @) can be written easily for =2
w1th the help of (B9). The coefficients of I, I, and
I, in (B") are given by the following expressions:

[C+m)Z=m)! L+ m’)) (1-m')1]/2 2 2 s 2 2
sll=s-m N {T+m-9)"lm +s-m) Doy Dy.y = - 2 sin' cosB,
D} D%, ,+D%, D2, =% (4cos?8 - 3cos?B+1 (B10)
x(cosk B)2Hmm"28 (_ gink g’ -mo2s | (B9) 11 D214+ D%, Dy, = B - B+1),
and D% D?,_,+D%, D%, =- 4 sin®3(cos?8+1).
Here the sum is over integer values of s for which APPENDIX C
the factorial arguments are greater than or equal To evaluate the integral
]
I: tf’ [F2(|E+§|)]2Yg"(9k+’, ¢k+p)Ygt*(9k*p,¢k*p) ko ( )
0 Jo a —bcosb,, ’ 1
we proceed in a manner similar to that described in Appendix B. We get finally
1=(- )"[D}§, D}_n 1s + (D%, D}.,, + D%, D? )1 + (D?,, D% m+ D8, D% 1, 1. (c2)
Here I'.= [Fz(lE+p‘)]zpé”(cosekop)Pz"'(cosep,) sin6do (3)
a’'=bcosh '
f
. . - and  cosbl, =B+ (K+P)/ D] |KE+P |
0+, and ¢,., are the polar angles of vector K+p k*p
in the coordinate system X" ,Y"”, Z". It can be 2 .2 "y
seen from the Fig. 6 that -(p +kcost)(k +p"+ 2kp cos)
(ce)

¢;*p= ¢

Using (C4) in (C3), the principal value of the inte-
gral I,,, can be evaluated.
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